A Balancing Domain Decomposition Method by Constraints for Advection-diffusion Problems

نویسندگان

  • XUEMIN TU
  • JING LI
چکیده

The balancing domain decomposition methods by constraints are extended to solving nonsymmetric, positive definite linear systems resulting from the finite element discretization of advection-diffusion equations. A preconditioned GMRES iteration is used to solve a Schur complement system of equations for the subdomain interface variables. In the preconditioning step of each iteration, a partially sub-assembled finite element problem is solved. A convergence rate estimate for the GMRES iteration is established, under the condition that the diameters of subdomains are small enough. It is independent of the number of subdomains and grows only slowly with the subdomain problem size. Numerical experiments for several two-dimensional advectiondiffusion problems illustrate the fast convergence of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BDDC Preconditioning for High-Order Galerkin Least Squares Methods using Inexact Solvers

A high-order Galerkin Least-Squares (GLS) finite element discretization is combined with a Balancing Domain Decomposition by Constraints (BDDC) preconditioner and inexact local solvers to provide an efficient solution technique for large-scale, convection-dominated problems. The algorithm is applied to the linear system arising from the discretization of the two-dimensional advection-diffusion ...

متن کامل

A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems

We propose a domain decomposition method for advection-diffusionreaction equations based on Nitsche’s transmission conditions. The advection dominated case is stabilized using a continuous interior penalty approach based on the jumps in the gradient over element boundaries. We prove the convergence of the finite element solutions of the discrete problem to the exact solution and we propose a pa...

متن کامل

Massively Parallel Solver for the High-Order Galerkin Least-Squares Method

A high-order Galerkin Least-Squares (GLS) finite element discretization is combined with massively parallel implicit solvers. The stabilization parameter of the GLS discretization is modified to improve the resolution characteristics and the condition number for the high-order interpolation. The Balancing Domain Decomposition by Constraints (BDDC) algorithm is applied to the linear systems aris...

متن کامل

A Schwarz Waveform Relaxation Method for Advection–Diffusion–Reaction Problems with Discontinuous Coefficients and non-Matching Grids

We present a non-overlapping Schwarz waveform relaxation method for solving advection-reaction-diffusion problems in heterogeneous media. The domain decomposition method is global in time, which permits the use of different time steps in different subdomains. We determine optimal non-local, and optimized Robin transmission conditions. We also present a space-time finite volume scheme especially...

متن کامل

A Finite Volume Ventcell-Schwarz Algorithm for Advection-Diffusion Equations

This paper provides a new fully discrete domain decomposition algorithm for the advection diffusion reaction equation. It relies on the optimized Ventcell–Schwarz algorithm with a finite volume discretization of the subdomain problems. The scheme includes a wide range of advection fluxes with a special treatment on the boundary. A complete analysis of the scheme is presented, and the convergenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007